Завантаження...

POWTRAN 690V 315KW Inverter
 

 

 

This photo was viewed 1 times and was downloaded in full size 0 times.

This photo was liked 0 times

Source page: http://commons.wikimedia.org/wiki/File:POWTRAN_690V_315KW_Inverter.jpg

Summary

Description
English: How To Maintain POWTRAN a VFD, frequency inverter, frequency converter

Do you know how to maintain Variable Frequency Drives (VFDs)? Doing so is easier than you might think. By integrating some simple, logical steps into your preventative maintenance program, you can ensure your drives provide many years of trouble-free service. Before looking at those steps, let's quickly review what is a VFD and how it works?

A Quick Overview

A VFD controls the speed, torque and direction of an AC Induction motor. It takes fixed voltage and frequency AC input and converts it to a variable voltage and frequency AC output. See Training Note "What is a VFD?" for a more detailed description of VFD concepts and operating principles. In very small VFDs, a single power pack unit may contain the converter and inverter.

Fairly involved control circuitry coordinates the switching of power devices, typically through a control board that dictates the firing of power components in the proper sequence. A microprocessor or Digital Signal Processor (DSP) meets all the internal logic and decision requirements.

From this description, you can see a VFD is basically a computer and power supply. And the same safety and equipment precautions you'd apply to a computer and to a power supply apply here. VFD maintenance requirements fall into three basic categories:

keep it clean; keep it dry; and keep the connections tight. Let's look at each of these.

Keep it Clean

Most VFDs fall into the NEMA 1 category (side vents for cooling airflow) or NEMA 12 category (sealed, dust-tight enclosure). Drives that fall in the NEMA 1 category are susceptible to dust contamination. Dust on VFD hardware can cause a lack of airflow, resulting in diminished performance from heat sinks and circulating fans (Photo 1). Dust on an electronic device can cause malfunction or even failure. Dust absorbs moisture, which also contributes to failure. Periodically spraying air through the heat sink fan is a good PM measure. Discharging compressed air into a VFD is a viable option in some environments, but typical plant air contains oil and water. To use compressed air for cooling, you must use air that is oil-free and dry or you are likely to do more harm than good. That requires a specialized, dedicated, and expensive air supply. And you still run the risk of generating electrostatic charges (ESD).

A non-static generating spray or a reverse-operated ESD vacuum will reduce static build-up. Common plastics are prime generators of static electricity. The material in ESD vacuum cases and fans is a special, non-static generating plastic. These vacuums, and cans of non-static generating compressed air, are available through companies that specialize in static control equipment.

Keep it Dry

In Photo 2 you can see what happened to a control board periodically subjected to a moist environment. Initially, this VFD was wall-mounted in a clean, dry area of a mechanical room and moisture was not a problem. However, as is often the case, a well-meaning modification led to problems.

In this example, an area of the building required a dehumidifier close to the mechanical room. Since wall space was available above the VFD, this is where the dehumidifier went. Unfortunately, the VFD was a NEMA 1 enclosure style (side vents and no seal around the cover). The obvious result was water dripping from the dehumidifier into the drive. In six months, the VFD accumulated enough water to produce circuit board corrosion. What about condensation? Some VFD manufacturers included a type of "condensation protection" on earlier product versions. When the mercury dipped below 32 degrees Fahrenheit, the software logic would not allow the drive to start. VFDs seldom offer this protection today. If you operate the VFD all day every day, the normal radiant heat from the heatsink should prevent condensation. Unless the unit is in continuous operation, use a NEMA 12 enclosure and thermostatically controlled space heater if you locate it where condensation is likely.

Keep Connections Tight

While this sounds basic, checking connections is a step many people miss or do incorrectly - and the requirement applies even in clean rooms. Heat cycles and mechanical vibration can lead to sub-standard connections, as can standard PM practices. Retorquing screws is not a good idea, and further tightening an already tight connection can ruin the connection (see Sidebar).

Bad connections eventually lead to arcing. Arcing at the VFD input could result in nuisance over voltage faults, clearing of input fuses, or damage to protective components. Arcing at the VFD output could result in over-current faults, or even damage to the power components. Photos 3 and 4 show what can happen.

Loose control wiring connections can cause erratic operation. For example, a loose START/STOP signal wire can cause uncontrollable VFD stops. A loose speed reference wire can cause the drive speed to fluctuate, resulting in scrap, machine damage, or personnel injury. Additional Steps

As part of a mechanical inspection procedure, don't overlook internal VFD components. Check circulating fans for signs of bearing failure or foreign objects - usually indicated by unusual noise or shafts that appear wobbly.

Inspect DC bus capacitors for bulging and leakage. Either could be a sign of component stress or electrical misuse. Photos 5 and 6 show fan and capacitor stress problems. Take voltage measurements while the VFD is in operation. Fluctuations in DC bus voltage measurements can indicate degradation of DC bus capacitors. One function of the capacitor bank is to act as a filter section (smoothing out any AC ripple voltage on the Bus). Abnormal AC voltage on the DC bus indicates the capacitors are headed for trouble.

Most VFD manufacturers have a special terminal block for this type of measurement and also for connection of the dynamic braking resistors. Measurements more than 4VAC may indicate a capacitor filtering problem or a possible problem with the diode bridge converter section (ahead of the bus). If you have such voltage levels, consult the VFD manufacturer before taking further action.

With the VFD in START and at zero speed, you should read output voltage of 40VAC phase-to-phase or less. If you read more than this, you may have transistor leakage. At zero speed, the power components should not be operating. If your readings are 60VAC or more, you can expect power component failure.

What about spare VFDs? Store them in a clean, dry environment, with no condensation allowed. Place this unit in your PM system so you know to power it up every 6 months to keep the DC bus capacitors at their peak performance capability. Otherwise, their charging ability will significantly diminish. A capacitor is much like a battery-it needs to go into service soon after purchase or suffer a loss of usable life.

Regularly monitor heat sink temperatures. Most VFD manufacturers make this task easy by including a direct temperature readout on the Keypad or display. Verify where this readout is, and make checking it part of a weekly or monthly review of VFD operation. You wouldn't place your laptop computer outside, on the roof of a building or in direct sunlight, where temperatures could reach 115 degrees Fahrenheit or as low as -10 degrees Fahrenheit. A VFD, which is basically a computer with a power supply, needs the same consideration. Some VFD manufacturers advertise 200,000 hours-almost 23 years-of Mean Time Between Failures (MTBF). Such impressive performance is easy to obtain, if you follow these simple procedures.
Date 20 November 2009(2009-11-20)
Source Own work
Author Huangsunshan

www.powtran.com www.powtran.net powtran.mountain@gmail.com powtran.manager@gmail.com mountain@powtran.net skype: huangsunshan MSN: huangsunshan@hotmail.com Tel: 0086 755 29630738 Fax: 0086 755 29666485 Cell phone: 0086- 13480739097

We are so interested in cooperating with you such capable and powerful company in many ways such as OEM and distributor, etc.

Thanks and best regards Sales Executive: Mountain Huang

Licensing

I, the copyright holder of this work, hereby publish it under the following licenses:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
  • share alike – If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.

You may select the license of your choice.


Licensing:
Creative Commons Attribution-Share Alike 3.0 Unported

Comments

Only registered users can post comments. Please login



EXIF data:
File name powtran_690v_315kw_inverter.jpg
Size, bytes 51465
Mime type image/jpeg
The images at Free-Photos.biz come mainly from Wikimedia Commons or from our own production. The photos are either in the public domain, or licensed under free linceses: Free-Photos.biz license, GPL, Creative Commons or Free-Art license. Some very few other photos where uploaded to Free-Photos.biz by our users and released into the public domain or into free usage under another free license (like GPL etc.)

All photos in average size can be saved by everyone without registration (by right-clicking) - and all photos can be downloaded in full-size and without the big watermark by members (by left-clicking) (registration and free membership required).

While the copyright and licensing information supplied for each photo is believed to be accurate, Free-Photos.biz does not provide any warranty regarding the copyright status or correctness of licensing terms. If you decide to reuse the images from Free-Photos.biz, you should verify the copyright status of each image just as you would when obtaining images from other sources.


The use of depictions of living or deceased persons may be restricted in some jurisdictions by laws regarding personality rights. Such images are exhibited at Free-Photos.biz as works of art that serve higher artistic interests.

christianity portal